skip to main content


Search for: All records

Creators/Authors contains: "Thornton, Brett F."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Climate change is an existential threat to the vast global permafrost domain. The diverse human cultures, ecological communities, and biogeochemical cycles of this tenth of the planet depend on the persistence of frozen conditions. The complexity, immensity, and remoteness of permafrost ecosystems make it difficult to grasp how quickly things are changing and what can be done about it. Here, we summarize terrestrial and marine changes in the permafrost domain with an eye toward global policy. While many questions remain, we know that continued fossil fuel burning is incompatible with the continued existence of the permafrost domain as we know it. If we fail to protect permafrost ecosystems, the consequences for human rights, biosphere integrity, and global climate will be severe. The policy implications are clear: the faster we reduce human emissions and draw down atmospheric CO 2 , the more of the permafrost domain we can save. Emissions reduction targets must be strengthened and accompanied by support for local peoples to protect intact ecological communities and natural carbon sinks within the permafrost domain. Some proposed geoengineering interventions such as solar shading, surface albedo modification, and vegetation manipulations are unproven and may exacerbate environmental injustice without providing lasting protection. Conversely, astounding advances in renewable energy have reopened viable pathways to halve human greenhouse gas emissions by 2030 and effectively stop them well before 2050. We call on leaders, corporations, researchers, and citizens everywhere to acknowledge the global importance of the permafrost domain and work towards climate restoration and empowerment of Indigenous and immigrant communities in these regions. 
    more » « less
  2. null (Ed.)
  3. Abstract

    Stable isotopes have emerged as popular study targets when investigating emission of methane (CH4) from lakes. Yet little is known on how isotopic patterns conform to variations in emission magnitudes—a highly relevant question. Here, we present a large multiyear data set on stable isotopes of CH4ebullition (bubbling) from three small adjacent subarctic lakes. The δ13C‐CH4and δD‐CH4range from −78.4‰ to −53.1‰ and from −369.8‰ to −218.8‰, respectively, and vary greatly among the lakes. The signatures suggest dominant hydrogenotrophic methanogenesis, particularly in the deep zones, but there are also signals of seemingly acetoclastic production in some high fluxing shallow areas, possibly fueled by in situ vegetation, but in‐sediment anaerobic CH4oxidation cannot be ruled out as an alternative cause. The observed patterns, however, are not consistent across the lakes. Neither do they correspond to the spatiotemporal variations in the measured bubble CH4fluxes. Patterns of acetoclastic and hydrogenotrophic production plus oxidation demonstrate that gains and losses of sediment CH4are dominated by sub‐lake scale processes. The δD‐CH4in the bubbles was significantly different depending on measurement month, likely due to evaporation effects. On a larger scale, our isotopic data, combined with those from other lakes, show a significant difference in bubble δD‐CH4between postglacial and thermokarst lakes, an important result for emission inventories. Although this characteristic theoretically assists in source partitioning studies, most hypothetical future shifts in δD‐CH4due to high‐latitude lake area or production pathway are too small to lead to atmospheric changes detectable with current technology.

     
    more » « less
  4. null (Ed.)
    Abstract. In the current era of rapid climate change, accuratecharacterization of climate-relevant gas dynamics – namely production,consumption, and net emissions – is required for all biomes, especially thoseecosystems most susceptible to the impact of change. Marine environmentsinclude regions that act as net sources or sinks for numerous climate-activetrace gases including methane (CH4) and nitrous oxide (N2O). Thetemporal and spatial distributions of CH4 and N2O are controlledby the interaction of complex biogeochemical and physical processes. Toevaluate and quantify how these mechanisms affect marine CH4 andN2O cycling requires a combination of traditional scientificdisciplines including oceanography, microbiology, and numerical modeling.Fundamental to these efforts is ensuring that the datasets produced byindependent scientists are comparable and interoperable. Equally critical istransparent communication within the research community about the technicalimprovements required to increase our collective understanding of marineCH4 and N2O. A workshop sponsored by Ocean Carbon and Biogeochemistry (OCB)was organized to enhance dialogue and collaborations pertaining tomarine CH4 and N2O. Here, we summarize the outcomes from theworkshop to describe the challenges and opportunities for near-futureCH4 and N2O research in the marine environment. 
    more » « less